第二十章 沉睡的蝴蝶 20.4 值得一问的问题

考夫曼曾经对一群科学家表示:“我们已经习惯于处理数以十亿计的事情!”任何事物聚集成群都会与原来有所不同:聚合体越多,由一个聚合体触发另一个聚合体这样的相互作用就会呈指数级增长。在某个点上,不断增加的多样性和聚合体数量就会达到一个临界值,从而使系统中一定数量的聚合体瞬间形成一个自发的环,一个自生成、自支持、自转化的化学网络。只要有能量流入,网络就会处于活跃状态,这个环就不会垮掉。

代码、化学物质或者发明,能在适当的环境下产生新的代码、化学物质或发明。很显然,这是生命的模式。一个生物体产生新的生物体,新的生物体再接着创造更新的生物体。一个小发明(晶体管)产生了其他发明(计算机),它(计算机)又产生了更新的其他发明(虚拟现实)。考夫曼想从数学上把这个过程概括为:函数产生新的函数,新的函数再生出其他更新的函数。

“五年前,”考夫曼回忆道,“我和布赖恩·古德温[进化生物学家]坐在意大利北部某个第一次世界大战的掩体中,在暴风雨中谈论着自催化系统。那时我就有了一个深刻的体会:达尔文所说的物竞天择和亚当·斯密提出的国富论何其相似。二者都有一双无形之手。但是在看到沃尔特·方塔纳关于自催化系统的工作之前,我一直都不知道该如何深入地把研究进行下去。方塔纳的工作实在是太漂亮了。”

我跟考夫曼提到了一个有争议的想法:在任何社会中,只要交流和信息连接的强度适中,民主就必然会出现。在思想自由流动并产生新思想的地方,政治组织会最终走向民主这个必然的、自组织的强大吸引子。考夫曼同意这个想法:“在1958年或1959年左右,我还是大二学生。当时我就投入极大的热情和精力写了篇哲学论文。我想搞清楚民主为什么会行得通。很明显,民主并不是因为它是多数人的规则才行得通。如今,33年过去了,我认识到,民主是允许相冲突的少数族群之间达成相对流畅的妥协的机制。它避免了族群们陷入局部有利但全局不利的解决方案。”

不难想象,考夫曼的布尔逻辑网络和随机基因组正是对市府乃至州府运作方式的映射。通过地方层级上持续不断的微小冲突和微小变革,避免了大规模的宏观和全面革命,而整个系统既不会一片混乱,也不会停滞不前。当不断的变革落实在小城镇上时,国家则保持了良好的稳定——而这又为小城镇处于不停寻求折衷的状态创造了环境。这种循环支持是另一个“迭坐”游戏,也表明这样的系统在动态上与自支持的活系统相似。

“这只是一种直觉,”考夫曼提醒我道,“你会有你的体会——从方塔纳的‘字符串生成字符串生成字符串’,到‘发明产生发明产生发明’,再到文化进化,然后到国富论。”考夫曼毫不隐瞒他的野心:“我在寻找一幅自洽的图景,可以将所有的事物联系起来:从生命起源到基因调控系统中自发秩序的涌现,到可适应系统的出现,到生物体间最优折衷方案的非均衡价格的确立,再到类似热力学第二定律的未知规律。这是幅万象归一的画面。我真的觉得就是这样。而我现在致力于解决的问题则是:我们能否证明有限的函数集合可以产生无限的可能性集合?”

我叫它为“考夫曼机”。一个精心挑选的不大的函数集合,连接成一个自生成环,并产生出无限更复杂的函数。自然界中充满了考夫曼机。卵细胞发育成巨鲸就是其中一例。进化机器经过十亿年时间由细菌生成火烈鸟又是一例。我们能制造一个人工考夫曼机吗?也许叫做冯诺依曼机更合适,因为冯·诺依曼早在二十世纪四十年代初期就提出同样的问题。他想知道,机器会制造出比自己更复杂的机器吗?不管它叫什么,问题都是一个:复杂性是如何自行建立的?

“通常,只有当知识结构建立起来后,我们才可能着手论证。所以关键是要问问题问到点子上。”考夫曼告诫我说。在谈话过程中,我常常听到考夫曼自言自语。他会从一大堆漫无边际的推测中剥离出一个,然后翻来覆去地从各种角度去审视它。“你该怎么去问这个问题?”他咬文嚼字地问自己。他所要的是一切问题之问题,而不是一切答案之答案。“一旦你问对了问题,”他说道,“就很有可能找到某种答案。”

值得一问的问题——这正是考夫曼在思考进化系统中自组织秩序时所想的。考夫曼向我吐露,“我们每个人似乎都有一些头脑深处的问题,并且都会认为其答案至关重要。令我困惑的是,为什么每个人都在问问题。”

有好几次,我都感到这位集医学博士、哲学家、数学家、理论生物学家、麦克阿瑟奖获得者于一身的斯图亚特·考夫曼,被他与之打交道的这个问题深深困扰。传统科学将所有关于宇宙中蕴藏创造性秩序的理论都拒之门外,而“无序之有序”则公然对抗传统科学,因而也可能受到排斥。当同时代的科学界在宇宙的方方面面都看到失控的非线性蝴蝶效应时,考夫曼则问道,混沌之蝶是否可以休眠了。他唤醒了造物体内可能存在的整体设计架构,正是这种架构,安抚了无序的混乱,生成了有序的平静。许多人听到这一说法时都会觉得很神奇。而追寻和构想这独一无二的重大问题则是考夫曼勇气和精力的主要源泉:“毫不夸张地说,我23岁的时候就想知道,有10万个基因的染色体究竟如何控制不同细胞类型的出现。我认为我发现了某种深层的东西,我找到了一个深层的问题。而且我仍然那么认为。我想上帝真是对我太好了。”

“如果你要就此写点东西的话,”考夫曼轻轻地说,“你一定要说这只是人们的一些疯狂想法。但是,如果真的存在这种规则生出规则再生出规则的情形——用约翰·惠勒的话说就是——宇宙是一个内视的系统,难道不是很神奇吗!? 宇宙自己为自己制订规则,并脱胎于一个自洽的系统。这并非不可能:夸克、胶子和原子以及基本粒子创造了规则,并依此而互相转变。”

考夫曼深信,他的系统们自己创建了自己。他希望发现进化系统用以控制自身结构的方法。当那幅网络图景第一次从他脑海中冒出来时,他就有个预感,进化如何实现自我管理的答案就存在于那些连接中。他并不满足于展示秩序是如何自发而又不可避免地涌现出来。他还认为这种秩序的控制机制也是自发涌现出来的。为此,他用计算机仿真了成千上万个随机组合,看哪一种连接允许群体有最大的适应性。“适应性”指系统调整自身内部连接以适应环境变化的能力。考夫曼认为,生物体,比如果蝇,会随着时间的推移而调节自己的基因网络,以使其结果——果蝇的身体——能够最好地适应由食物、避护所和捕食者所构成的周遭环境的变化。值得一问的问题是:是什么控制了系统的进化?生物体自身能够控制其进化吗?

考夫曼研究的主要变量是网络的连接度。在连接稀少的网络中,平均每个节点仅仅连着一个或者更少的节点。在连接丰富的网络里,每个节点会连接十个、百个、千个乃至上百万个节点。理论上每个节点连接数量的上限是节点总数减一。一百万个节点的网络,每个节点可以有一百万减一个连接,也即每个节点都连着其他所有节点。做一个粗略类比的话,通用的每个员工都可以直接连接着其他所有749999个员工。

在改变其通用网络连接度参数的过程中,考夫曼发现了一个不会让通用汽车总裁感到惊讶的事实。一个只有少数个体可以影响其他个体的系统不具备较强的适应性。连接太少不能传播创新,系统也就不会进化。增加节点间的平均连接数量,系统弹性也随之增加,遇到干扰就会“迅速反弹”。环境改变时,系统仍能维持稳定。这种系统能够进化。而完全出乎意料的发现是,超出某个连接度时,继续增加连接度只会降低系统作为整体的适应性。

考夫曼用山丘来描绘这种效应。山顶是灵活性的最佳点。山顶的一侧是松散连接的系统:迟缓而僵化;另一侧是连接过度的系统:一个由无数牵制力量形成的死锁网格——每个节点都受到许多相互冲突的影响,使整个系统陷入严重瘫痪。考夫曼把这种极端情况称为“复杂度灾难”。出乎许多人意料的是,这种过度连接的情形并不少见。从长远来看,过度连接的系统与一盘散沙并无二致。

最佳的连接度位于中间某个位置,它将赋予网络最大的灵活性。考夫曼在他的网络模型中找到了这个最佳点。他的同事起初难以相信他的结果,因为这似乎是违反直觉的。考夫曼所研究的精简系统的最佳连接度非常低,“只在个位数左右”。拥有成千上万个成员的大型网络里,每个成员的最佳连接度小于10。而一些网络甚至在连接度小于2时达到性能顶点!大规模并行系统不必为了适应而过度连接。只要覆盖面足够,即使是最小的平均连接数也够用了。

考夫曼第二个出乎意料的发现是,不管某个网络由多少成员组成,这个低的最佳值似乎都波动不大。换句话说,即使网络中加入更多的成员,它也不需要(从整个系统的适应性来说)增加每个节点间的连接数。通过增加成员数而不是成员间的平均连接数来加快进化,这印证了克雷格·雷诺兹在其人工生命群中的发现:你可以在一个群中增加越来越多的成员,而不必改变其结构。

考夫曼发现,当生物体或介子的平均连接数小于2时,整个系统的灵活性就不足以跟上变化。如果群体的成员之间缺乏充分的内部沟通,就无法作为一个群体来解决问题。更准确地说,它们分成几个孤立的小团体,但小团体之间没有互动。

在理想的连接数下,个体之间所流动的信息量也处于理想状态,而作为整体的系统就能不断地找到最佳解决方案。即使环境快速改变,网络仍能维持稳定并作为一个整体而长久存在。

考夫曼的定律还表明,当个体间的连接度超过某个值时,适应性就冻结了。当许多行动取决于另外许多互相矛盾的行动时,就会一事无成。用地形来做比的话,就是极端的连接产生极端的险峻,使任何动作都有可能从适应的山顶跌入不适应的山谷。另一种说法是,当太多人可以对其他人的工作指手划脚时,官僚主义的僵尸就开始复活。适应性束缚于互锁的网格。对于看重互连优势的当代文化来说,这个低的连接度上限实在出人意料。

我们这些有交流瘾的后现代人应该关注这个结果。我们正在不断增加我们网络社会的总人数(1993年全球网络用户月增长率为15%)以及每个成员所连接的人数和地点数。在企业和政府中,传真、电话、垃圾邮件和庞大的相互关联的数据库,实际上也增加了每个人之间的连接数。而不论是哪一种增长,都没有显著地提高我们系统(社会)作为整体的适应性。